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2 Abstract

The composite wedge localization element:
Composite tetrahedron compatible.
Regularizes sub-grid localization.
Extending to fracture and failure.

Progress:
Lower-order projections.
Rigid-body modes.

Challenges:
Pressure field stability.
Decoupling length scales.
Implicit solve convergence.



Background



4 Energy functional

With both solid and localization elements [1–3]:

Π[φ,F,P] =
∑
±

∫
Ω±

A(F,Z) dV +

∫
Γ

A(F,Z)h dS

+
∑
±

∫
Ω±

P : (F− F) dV +

∫
Γ

P : (F− F)h dS

−
∑
±

∫
Ω±

ρ0B ·φ dV −
∑
±

∫
∂TΩ±

T ·φ dS

Lagrange multiplier P enforces F = F,
where P = P = ∂A/∂F is also enforced.
Localization element thickness h required
for both integration and normalization.



5 Localization kinematics

Let x(t) = φ(ξ; t) andX = x(0) = φ0(ξ).

Deformation from jump [4]:

F⊥ = I+
[[φ̂]]

h
⊗N and [[φ]] = F∥[[φ̂]]

Deformation from surface:

F∥ = ∂µφ⊗ ∂µφ0 + n⊗N

Resulting additive decomposition:

F = F∥F⊥ = F∥ +
[[φ]]

h
⊗N

Fundamentally different from cohesive surface elements [5].



6 Element discretization

Let x̃a = 1
2
(x+

a + x−
a ) and [[xa]] = x+

a − x−
a .

Subtriangles project to linear element:

Ā = λα

(∫
ΓE

λαλβI dS

)−1 ∫
ΓE

λβA dS

Projected gradient operators:

F̄ = B̄∥
ax̃a + B̄⊥

a [[xa]]

Nodal forces, quasi-traction-separation:

f±
a =

1

2

∫
Γ

P : B̄∥
a h dS ±

∫
Γ

PN̄a dS

Implemented in Sierra/SolidMechanics [6].



Progress



8 Lower-order projections

Volumetric locking:
Observed in nearly incompressible flow.
Manifested as oscillatory pressure fields.

Mitigation technique [3]:
Lower-order projection of the Jacobian.

F̃ =

(
J̄⋆

J̄

)
F̄ and J̄⋆ =

1

VΩ

∫
Ω

J̄ dV

Lower-order projection of the pressure.

p̄⋆ =
1

J̄⋆VΩ

∫
Ω

tr(P̃F̃T )

3
dV

Corresponding adjusted nodal forces.

fa =

∫
Ω

(
P̃− 1

3
tr(P̃F̃T )F̃−T + J̄ p̄⋆F̃−T

)
· B̄a

(
J̄⋆

J̄

)1/3

dV

s/h ≈ 40



9 Rigid-body modes

Surface-separating finite elements:
Localization elements.
Cohesive surface elements.

Composite surface-separating finite elements:
Additional rigid-body modes.

Using lower-order volumetric projections:
Additional low-energy modes?
Stabilization is turned off here.

Parallel decompositions:
No rigid-body modes in the final assembly
as long as the ham stays in the sandwich.
Need info across processor boundaries.



Challenges



11 Pressure field stability

Large ratios of s/h disrupts pressure fields:
Oscillatory or downright nasty.
Visible effects after significant plasticity.
Refinement typically alleviates the issue.

An issue for any localization element, so far:
Hexahedral localization element.
Composite wedge localization element.

Is there always a point of instability?

s/h ≈ 4

s/h = 24

s/h = 12

s/h = 6

s/h = 3

s/h ≈ 40



12 Decoupling length scales

Weight contributions separately [7]:

f±
a =

1

2

∫
Γ

P : B̄∥
a t dS ±

∫
Γ

PN̄a dS

Or try to explicitly retain variational structure:∫
Γ

A(F∥,Z) t dS +

∫
Γ

[
A(F,Z)−A(F∥,Z)

]
h dS

Surface element, quasi-traction-separation, extra:

f±
a =

1

2

∫
Γ

P∥ : B̄∥
a t dS ±

∫
Γ

PN̄a dS

(ignore?)±
∫
Γ

(
P−P∥

)
: B̄∥

a h dS

Is any of this fair in the first place?

t/h = 0.0

t/h = 0.5

t/h = 1.0

t/h = 2.0

εp p



13 Implicit solve convergence

Explicit integration analyses:
Complicated by massless elements.
Less desirable in certain cases.

Implicit integration analyses:
Sometimes the fields look great,
and the damage evolution is "smooth"
but it just will not converge!
Currently a work-in-progress [7–10].

Failure modeling is hard! Who knew?
Need more refinement?
Need non-local damage model?
Something else happening?



14 Conclusion

The composite wedge localization element:
Composite tetrahedron compatible.
Original development finished previously.
Newly implemented lower-order projections.

Ratio of element size to thickness (s/h) issue:
Is mesh refinement always possible?
Will scaling the membrane forces work?

Which way should they be scaled?
Does h need to grow as a field [4]?

Implicit integration analyses:
Is there something preventing convergence?
Or is this simply a difficult problem to solve?
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