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Abstract

In statistical thermodynamics, partition functions are required to evaluate the current state.
It is typically impossible to analytically calculate the resulting configuration integrals, but
it is sometimes possible to obtain approximations in the limit of steep potential energies [1].
This approach directly leverages Laplace’s method for approximating integrals [2] and has
been quite successful in recent applications [3–6]. Motivated by models with an infinite
number of degrees of freedom [7, 8], this approach should be extended to the statistical ther-
modynamics of fields. To that end, Laplace’s method is developed for functional integrals.

Mathematics

Consider a partition function Z given by the functional path integral

Z =

∫
f(x) e−λϕ(x) Dx, (1)

where f(x) and ϕ(x) are functionals of the path x(s). For simplicity, ϕ(x) is assumed to be

ϕ(x) =
1

2

∫ [
x(s)− x0

]2
ds, (2)

which is minimized at x(s) = x0, i.e., ϕ(x0) = 0. For λ ≫ 1, the partition function Z
should be well approximated by some functional integral analog of Laplace’s method [1, 2].
It is assumed that x(s) = x0 lies within the interior of the path integration, and that the
functional derivatives of f(x) with respect to x, denoted as f (n) = δnf/δxn, exist. For λ ≫ 1,
the path integral Z can be approximated by instead integrating over the paths in the narrow
region |x(s) − x0| < ϵ. Subsequently, f(x) can be approximated in that region using the
functional Taylor series [9] of f(x) about x(s) = x0,
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f(x) ∼ f(x0) +

∫
δf(x0)

δx(s)
∆x(s) ds+

1

2

∫∫
δ2f(x0)

δx(s)δx(s′)
∆x(s)∆x(s′) ds ds′ + · · · . (3)

where ∆x(s) = x(s) − x0. Since the functional derivatives are evaluated at the constant
function x0 they can be removed from the integrals, and then Z can be approximated by

Z ∼
∫ x0+ϵ

x0−ϵ

{
f(x0) +

δf(x0)

δx

∫
∆x(s) ds+ · · ·

}
e−

λ
2

∫
∆x(s) ds Dx. (4)

Following Laplace’s method [2], the range of integration is then extended back to all paths
since the contribution from outside the narrow region |x(s)−x0| < ϵ is small. The functional
Taylor series remains and can be written more succinctly in terms of a sum, yielding

Z ∼
∫ ∞∑

n=0

1

n!

δnf(x0)

δxn

[∫
∆x(s) ds

]n
e−

λ
2

∫
∆x(s) ds Dx. (5)

Applying the change of variables u(s) =
√
λ∆x(s), Du =

√
λDx simplifies this result to

Z ∼ 1√
λ

∫ ∞∑
n=0

1

n!
√
λn

δnf(x0)

δxn

[∫
u(s) ds

]n
e−

1
2

∫
u2(s) ds Du. (6)

The zeroth term in the series is simply the path integral of the exponential functional.

A =

∫
e−

1
2

∫
u2(s) dsDu. (7)

Utilizing path integration by parts [10], the second term is found to equal the first,∫ [∫
u(s) ds

]2
e−

1
2

∫
u2(s) ds Du = A, (8)

and repeatedly applying the same process allows all even terms to be obtained as∫ [∫
u(s) ds

]2m
e−

1
2

∫
u2(s) ds Du = A(2m− 1)!!. (9)

It can be similarly shown that all odd terms are zero. Z is then approximated for λ ≫ 1 by

Z ∼ A√
λ
f(x0)

[
1 +

∞∑
m=1

(2m− 1)!!

λm(2m)!

f (2m)(x0)

f(x0)

]
. (10)

If ϕ(x) is not a harmonic functional of x, there will be additional terms involving ϕ(n)(x0).
Also, this approximation heavily depends on the assumption that x0 is a constant function.
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