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2 Abstract

Physically-based constitutive models enable predictions of polymer solid mechanics.
Models using continuum mechanics alone sometimes rely on heuristics.
Relations obtained from molecular statistical mechanics provide a physical basis.

These relations are often obtained using idealized single-chain models.
Analytic force-extension relations are available for certain ensembles and models.
Approximations or numerical solutions are generally difficult in other cases.

Large-deformation models for polymers must incorporate chain extensibility.
Extensible single-chain models are typically unsolvable and numerically difficult.
Inextensible single-chain models, if not solvable, are at least numerically easy.
One remedy is to approximate link extensibility in a broad inextensible model class.



3 Background

Consider discrete single-chain models with separable potential energy functions.

Π(ℓ, θ, ϕ) = U0(θ, ϕ) + U1(ℓ)− f · ξ (1)

In most cases, each link contribution is separate and from the same function.

U1(ℓ) =

Nb∑
i=1

u(ℓi) (2)

Approximate the link potential energy as harmonic, and write in nondimensional form.

βU1 ∼ κ

2

Nb∑
i=1

(λi − 1)2 (3)

Eq. (1) applies to most discrete single-chain models [1] in the isotensional ensemble [2].



4 Asymptotics

General partition function with a special set of degrees of freedom and related potential.

Z =

∫
dΓ0

∫
dX e−βH0(Γ0,X) e−βU1(X) (4)

Separate contributions in nondimensional form, where ϕ′(x̂i) = 0 and ϕ′′(x̂i) = 1.

βU1(X) =
N∑
i=1

κiϕi(xi) (5)

For steep (κi ≫ 1) potentials, an asymptotic approximation upon the reference system [3].

Z ∼

(
N∏
i=1

√
2π

κi

)[
Z0(X̂) +

N∑
j=1

gj(x̂j)

κj
+ ord

(
κ−2
j

)]
(6)

One simple example is correcting upon the rigid-rotor-harmonic-oscillator approximation.



5 Derivation

The reference system is the inextensible single-chain model for some set of link lengths.

Z0(η, λ) = λ2

∫
sin θ dθ

∫
dϕ eβf ·ξ−βU0 (7)

The asymptotic approach yields an approximation for the extensible single-chain model.

Z(η) ∼
(
2π

κ

)Nb/2
[
Z0(η, 1) +

1

2κ

Nb∑
j=1

∂2Z0

∂λ2
j

∣∣∣∣
λ=1

+ ord
(
κ−2)] (8)

The nondimensional relation for the average mechanical response can then be calculated.

γ(η) ∼ γ0(η) +
1

κ

{
1

Nb

[
2γ0(η) + 3ηγ′

0(η) +
1
2
η2γ′′

0 (η)
]
+ ηγ2

0(η) + η2γ0(η)γ
′
0(η)

}
(9)

This relation only requires ensemble-averaged information about the reference system.



6 Verification

The freely jointed chain is analytically tractable.

γ(η) ∼ L(η) + 1

κ

[
coth(η)− η csch2(η)

]
+

η

κ

The result is comparable to a previous result [4].

γ(η) ∼ L(η) + η

κ

[
1− L(η) coth(η)
1 + (η/κ) coth(η)

]
+

η

κ

The former matches the latter to within ord
(
κ−2

)
,

and the latter is coincidentally accurate to within
transcendentally small terms [3, 5].
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The general asymptotic relation is verified in one case, but it should not depend on Nb here.



7 Validation

The freely rotating chain is analytically intractable.

γ(η) ∼ γ0(η) + κ−1h(η) + ord
(
κ−2)

Monte Carlo methods in the isometric ensemble.
Random walks for entire curves in one shot.
Micro-canonical ensemble when inextensible.
Independent bond sampling when extensible.†

One trillion samples, one thousand bins.
Numerical calculations to obtain γ(η).

†Difficulties for large extension and large stiffness values from sample rarity.
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The general asymptotic relation appears to be valid, but needs further study (Nb, θb, error).



8 Conclusion

Physically-based constitutive models enable predictions of polymer solid mechanics.
Idealized single-chain models that are asserted to be physically representative.
Extensibility must be included to accurately model large deformation or fracture.

An asymptotic theory for extensible links in a broad class of single-chain models is desired.
Analytic approximations built upon the more easily solvable inextensible model.
Preliminary results are promising but incomplete, requiring further investigation.
Successful ventures so far have not considered multi-dimensional coupling [5–7].

Future work involves revisited continuum models and additional single-chain modeling.
Attempt to improve existing constitutive modeling efforts for polymer failure [8–12].
Derive extensions for anharmonic potentials, continuous degrees of freedom [13].
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