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Abstract

Creating finite element meshes from image stacks is a bottleneck in analyst workflows.
Difficult to recover a high-quality, physically-representative, tractable mesh.
Often times one (or even two) of these three goals must be sacrificed.

Solutions are sometimes inflexible, slow, or unavailable (closed-source or non-existent).
Stringing together tools to fill capability gaps complicates and threatens workflows.
Closed-source tools inhibit collaboration and fall behind cutting-edge methodology.

automesh [1], an open-source automatic mesh generation tool written in Rust (CLI+Python).
Robust automation of many features (meshing, surface reconstruction, etc.).
Testing of completed features is showing significantly faster time-to-solution.
Capabilities are comparable to Sculpt [2], providing a useful measuring stick.



Segmentation

Images become segmentations through categories.
Image stacks obtained from scans (e.g., CT).
Each pixel in an image is assigned a class.
Semantic segmentations aggregate objects.
Instance segmentations differentiate objects.

Stacks of categorized pixels create a set of voxels.
Simply an ordered list of unsigned integers.
Storage cost is typically small (NPY, SPN).
This is the starting point for automesh users.

Many applications for image-to-mesh workflows:
Traumatic brain injury modeling (ONR).
Defects, microstructures, surveillance, etc.




4 | Meshing

Direct voxel-to-hex meshing:
= Simple, robust, perfect quality [2].
= Often intractable element count.
» Poor representation of internal surfaces.
» Past focus of automesh (completed).
Internal surface reconstruction:
= Marching cubes, dual contouring, etc.
= Smooth, but preserve volume and manifold.

» Current focus of automesh (nearly done).
Adaptive hexmeshing [3] or tetmeshing:

= With or without surface reconstruction.
= Secondary focus of automesh (for now).



Performance

Measure time for direct voxels-to-hexes meshing.

Perfect cube of a single material type. U
Optionally® also an embedded sphere. T 10
Ideal O(N) scaling on one processor, rates are: %
automesh (5.7 million voxels/second) % 10!
automesh’ (9.9 million voxels/second) E
Sculpt (0.1 million voxels/second) 10°
T Rate is approximately scaled by the fraction of retained voxels, i.e.,
it is about 89% of the original rate when including removed voxels. 101

Memory not studied as closely yet, but with 125 GB:
automesh could do about 1 billion voxels.
Sculpt could do about 100 million voxels.

automesh
automesh'
Sculpt

108 107 108



6 | Smoothing

Laplace smoothing:
= Moves nodes towards average of neighbors.

1 n
Axg = A EZX;,—XQ
b=1
= Drastically reduces volume (-16% in 10 steps).
Taubin [4] smoothing:

= Alternates deflation and inflation (A < —p).
= Nearly preserves volume (+1% in 200 steps).

u Acts like a low-pass filter, &k = A= + u= 1.
A=063, k=01, u=(k—A"1)"" = —0.67
Optional [5] hierarchical control:

= "Separately" smooth surfaces and volumes.



7 | Octree

Efficient representation using an octree [6, 7].
= Recursive subdivision of space into 8 octants.
= Rules for subdivision based on materials.
= Additional balancing and pairing rules.
An octree as an intermediate workflow step.
= Creates an "adaptive" segmentation.
= Accelerates methods like defeaturing.
» Enables adaptive finite element meshes.

Micro-CT of a spinal unit from SwRI [8].
= 1 billion voxels become 10 million cells.
= 5 million cells are removable void.
m 200x reduction, and in only 36 seconds.




8 | Reconstruction

Smooth reconstruction of internal surfaces.

= More representative of physical features.

= Output (STL) facilitates volume meshing.
automesh simply facets the material boundaries.

= Volume-preserving and free of holes.

= Rectify non-manifold edges and vertices.

» Defeaturing and Taubin smoothing are key.
Micro-CT scan of a laser weld section [9].

= Input: 2 materials, 6,748,800 voxels.
= Read, defeaturef, mesh?, smooth, write.
= Output: STL with 762,396 facets, 33 seconds.

1 13.5 seconds, compared to 36 minutes for Sculpt (160x slower).

* 18.2 seconds; with defeaturing, is about 95% of the total time. i



9 | Adaptivity

Adaptive hexmeshing using dualization [3].
A (weakly) balanced and paired octree.
Hanging nodes connect for a polygonal mesh.
Centroids connect for guaranteed hexes.
Levels of adaptivity are automatic.
Faster transitions than other methods.
Work-in-progress within automesh.
Strongly balanced (16% average difference).
Pairing work [10] would be better (50% less). \
Element quality is somewhat low (initially). ' : .
Adaptive tetmeshing also possible [11].

Surface reconstruction typically still necessary.
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Flexibility

Numerous capabilities and options to enable users to tackle many problems.
Conversion, defeaturing, meshing, metrics, reconstruction, removal, scaling, smoothing.
Growing collection of input and output types (Abaqus, Exodus, CSV, NPY, SPN, STL, VTK).
User-friendly tool with multiple interfaces and documentation for a variety of users.
CLI, Python, and Rust interfaces, each complete with documentation.
User guide for getting started and understanding the methods.
Automated testing, packaging, and deployment using CI/CD.

automesh mesh -i weld.npy --remove 0 --defeature 64 --surface -o weld.stl smooth

Reading weld.npy
Done 341.475783ms [2 materials, 6,748,800 voxels]
Defeaturing clusters of 64 voxels or less
Done 13.476138903s
Meshing internal surfaces
Done 18.16082286s [1 blocks, 762,396 elements, 381,249 nodes]
Smoothing with 200 iterations of Taubin
Done 632.348188ms
Writing weld.stl
Done 61.946009ms
33.199842742s
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Conclusion

automesh: Automatic mesh generation.
Flexible, effective, user-friendly software.
Significantly faster than a comparable tool.
Rust and the open-source world have been key.
Rust enables high-performance tools [12].

Open-source is more dynamic and advanced.

These ingredients continue to fuel rapid progress.
Tweak reconstruction, reconsider adaptivity.
Rust for HPC is coming, e.g., lamellar [13].

Success is possible when shifting paradigms.
Massively parallel vs. massive improvement.
Technical debt vs. investing in starting over.
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[Cececceteeeeeecd
[COMMAND]

Chad B. Hovey <chovey@sandia.gov>
Michael R. Buche <mrbuche@sandia.gov>

- Input/output file types are inferred
- Scaling is applied before translation

Converts between mesh or segmentation file types
Defeatures and creates a new segmentation

Creates a finite element mesh from a segmentation
Quality metrics for an existing finite element mesh
Applies smoothing to an existing mesh

Print this message or the help of the given subcommand(s)

Print help
Print version

automesh smooth

1
Applies smoothing to an existing mesh

[OPTIONS] <FILE> <FILE>

<FILE>
<FILE>
<NUM>
<NAME>
<FREQ>
<SCALE>
<FILE>

Pass to enable hierarchical control

Mesh (inp | stl) input file

Smoothed mesh (exo | inp | mesh | stl | vtk) output file
Number of smoothing iterations [default: 20]

Name of the smoothing method [default: Taubin]

Pass-band frequency for Taubin smoothing [default: 0.1]
Scaling parameter for smoothing [default: 0.6307]

Name of the quality metrics file (csv | npy|

Pass to quiet the terminal output

Print help
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