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2 Abstract

In computational solid mechanics...

It is non-trivial to attain a reasonable mesh and solution.

Tetrahedral elements are easy to mesh, but can perform poorly.
Hexahedral elements can perform better, but are hard to mesh.
Composite tetrahedral elements offer the best of both worlds [1, 2, 3].

Highly localized deformation affects meshing and solving.

Increased mesh refinement does not converge upon a solution.
Cohesive zone elements provide convergence using a special constitutive law [4].
Localization elements provide convergence using the material constitutive law [5].

A composite wedge localization element is developed for fracture and failure [6].
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Finite element formulation



5 Energy functional

Π0[φ] =

∫
Ω

A(F,Z) dV︸ ︷︷ ︸ −
∫
Ω

ρ0B ·φ dV −
∫
∂TΩ

T ·φ dS

∫
Γ

ϕ(F,Z) dS︸ ︷︷ ︸ +
∑
±

∫
Ω±

A(F,Z) dV

∫
Γ

A(F,Z)h dS︸ ︷︷ ︸∫
Γ

A∥(F,Z) h∥ dS +

∫
Γ

A⊥([[φ]],Z) h⊥ dS

Length scale h normalizes [[φ]], the displacement jump [5].
Using two length scales h∥, h⊥ will also decouple the membrane forces [6].



6 Energy functional

Π[φ,F,P] =
∑
±

∫
Ω±

A(F,Z) dV +

∫
Γ

A(F,Z)h dS

+
∑
±

∫
Ω±

P : (F− F) dV +

∫
Γ

P : (F− F)h dS

−
∑
±

∫
Ω±

ρ0B ·φ dV −
∑
±

∫
∂TΩ±

T ·φ dS

Equivalent functional via Lagrange multiplier P
enforcing the constraint F = F where,
P = P = ∂A/∂F is also enforced [1, 2, 3].

Permits formulation of composite elements.
Formulate F for localization element to calculate P using the constitutive model for A.



7 Localization kinematics

Element construction and kinematics
are similar between the two elements.

The constitutive behaviors are not.

Cohesive zone elements prescribe a
traction separation law [4].
Localization elements use the same
constitutive law as the bulk [5].

They accomplish this by introducing
a length scale (or two).

Important
Localization elements are not cohesive zone elements.



8 Localization kinematics

Let x(t) = φ(ξ; t) andX = x(0) = φ0(ξ).

F⊥ = I+
[[φ̂]]

h
⊗N, [[φ]] = F∥[[φ̂]]

F∥ = gµ︸︷︷︸
∂µφ

⊗ Gµ︸︷︷︸
∂µφ0

+n⊗N

n =
g1 × g2

∥g1 × g2∥
, N =

G1 ×G2

∥G1 ×G2∥

F = F∥ +
[[φ]]

h
⊗N

Additive decomposition
Frame invariant deformation gradient, order of multiplicative decomposition irrelevant [5, 6].



9 Element discretization

Let x̃a = 1
2
(x+

a + x−
a ) and [[xa]] = x+

a − x−
a .

φ(ξ) = Na(ξ)x̃a, [[φ]] = Na(ξ)[[xa]]

F = B∥
a︸︷︷︸

f(x̃a)

x̃a + B⊥
a [[xa]] =

∑
±

B±
a x±

a

R±
a =

h∥

2︸︷︷︸
h∥ ̸=h

∫
Γ

P : B∥
a dS ± h⊥

h︸︷︷︸
h⊥=h

∫
Γ

PNNa dS

Nodal forces
Independent control of localization length scale [6], inherently defined traction-separation [5].



10 Element projection

Projection of subtriangle fields onto linear element

A = λα

(∫
ΓE

λαλβI dS

)−1 ∫
ΓE

λβA dS

R±
a =

h∥

2

∫
Γ

P : B∥
a dS ± h⊥

h

∫
Γ

Pb
⊥
a dS

B±
a;iJk =

1

2

(
δikb

∥,0
a;J + εijk b

∥,j
a;J︸︷︷︸

f(x̃a)

)
± δikb

⊥
a;J

Consistent with 10-noded composite tetrahedron
Nearly incompressible large deformation plasticity [2, 3], localization and possible fracture [6].



Finite element applications



12 Calibration to fracture toughness

Hill plasticity [7] damage model [8] for Al 6061-T6 calibrated to smooth/notched tension [9].

ApplyKI displacement field.

Displacement (magnitude).

RampKI up untilKIC .

True stress (magnitude).

Calibrate h to fracture.

Damage, onset of fracture.

Current questions:
Scale of h [5]?
Element locking [3]?
Stiff problem?



13 Three-hole tension experiment

Stable ductile fracture along a known path [10].



14 Conclusion

A new 12-noded composite wedge localization element.

Compatible with the 10-noded composite tetrahedral element.
Regularizes localized deformation using one (or two) length scales.

Applicable to fracture and failure in finite element models.

Calibration of length scale to fracture toughness.
Prediction of stable ductile fracture along a predetermined path.

Ductile fracture along unknown paths presents several challenges.

Criterion for crack advancement with complicated material models.
Remeshing and placement of localization elements (FRANC3D).
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